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I
THE POSITION OF THE HYDROGEN ATOMS

AND THE ZERO-POINT ENTROPY OF ICE

1. Historical introduction.

In the middle of the thirties, a certain finality appeared to have 
been reached with regard to the opinion on the structure of 

ice. Barnes1) had shown that the oxygen nuclei lay in puckered 
hexagonal layers, in which oxygen atoms were raised and lowered 
alternately (see fig. 1). Adjacent layers were mirror-images and
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Fig. 1. Projection of a layer of oxygen atoms in an ice crystal. The small circles 
are oxygen atoms below the level of the paper, and the large circles, oxygen atoms 

above the level of the paper.

the parameters were adjusted so that each oxygen nucleus was 
surrounded by 4 oxygen nuclei in a regular tetrahedral arrange­
ment at a distance of 2.76 A. Bernal and Fowler2) had shown 
that it is probable that the protons lie on the linkages between 
the oxygen nuclei, ca. 1 Å. from one and 1.76 Å. from the other. 
One and only one proton lies on each linkage, and the arrange­
ment is such that each oxygen nucleus has two and only two 
protons at a distance of ca. 1 Å. from it. In this way the ice is 
built up of molecules closely approaching the form and size, 
which Mecke3) has calculated for the molecule of water vapour 
from the infra-red spectrum (isosceles triangle with the oxygen 
nucleus at the apex, apical angle ca. 106° and sides 0.97 Å.). An

1* 
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extremely large number of such proton arrangements are possible. 
Bernal and Fowler tended to assume that the arrangement in 
ice was irregular, in any case in the region of the melting point. 
They write: “In that case ice would be crystalline only in the 
position of its molecules, but glass-like in their orientation.”

Finally, in 1935 Pauling4) pointed dut that Debye’s investi­
gations on the dielectric properties of ice showed that the con­
figuration of ice must alternate between the many alternatives 
given by Bernal and Fowler. Pauling calculates the number 
of possible configurations of an ice crystal to (3/2)N, where N is 
the number of molecules in the crystal, and by assuming that all 
these configurations, even at low temperature, are equally pro­
bable, he arrives at the result that ice must have a zero-point entropy 
of À/n(3/2)N = R 7n(3/2) = 0.806 kcal/gmol/degree. This value 
agrees extremely well with the value of 0.82 ±0.15 kcal/gmol/degree 
found experimentally by Giauque5). On account of this excellent 
agreement, the problem of the structure of ice had since generally 
been considered as solved.

The way in which Pauling develops his formula for the 
number of configurations only gives the formula as an approx­
imation. Pauling considers the proton-condition for a first, 
randomly chosen, oxygen atom in the lattice, while an exact 
development requires that also, and especially, the conditions for 
the other atoms should be considered. For these the proton­
position in the direction of the previously considered adjacent 
atoms is already defined.

An exact development of the formula can be obtained in the 
following way: We have an ice crystal, in which the position of 
all the oxygen atoms is known, and we will now determine the 
number of possible proton configurations. Let us imagine that 
we have decided on the proton configurations around all the 
oxygen atoms in and beneath one of the puckered hexagonal 
layers. Let us furthermore assume that we have decided on the 
situation around the oxygen atoms in a zig-zag row above this 
layer, and are now going to investigate the number of configura­
tions during the construction of an adjacent zig-zag row. It can 
easily be seen that, if the crystal is large, it is only the conditions 
during this construction that must be investigated in order to 
solve the problem. We will now choose to place the new zig-zag 
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row at that side of the first, where the low-lying molecules are 
present. In fig. 1, this means that the new zig-zag lines must be 
placed in the order 1, 2, 3, 4. When we do this, the new oxygen 
atoms, for which the proton configuration must be decided, will 
always have two adjacent atoms already in position, for which 
the configuration is decided. If these two adjacent atoms both 
have protons in the direction towards the atom considered, or 
if they both have no protons in this direction, then the proton 
placing around the atom considered is unambiguously decided. 
On the other hand, if the proton situation is different towards 
the two adjacent atoms, the proton placing can be performed in 
two ways.

Let us call the number of configurations in the system so far 
constructed, A + B, where A is the number of configurations, in 
which the two adjacent atoms show the same proton situation, 
and B, the number of configurations in which they show different 
proton situations towards the new oxygen atom. Hence the 
number of possible configurations rises from A + B to A + ‘IB, 
when this atom is included in the system. Around each oxygen 
atom, and hence also around the oxygen atom last added, two 
protons can be placed in six different ways. In the group of con­
figurations, the number of which we have calculated above to 
be A + 2B, the 6 ways occur in the following numbers: A/2, A/2, 
B/2, B/2, B/2 and B/2. Since, for reasons of symmetry, these 
numbers must be equally large, A must be equal to B. As a result, 
the number of possible configurations for each oxygen atom in 
the ice crystal rises in the ratio (A + 2B)/(A + B) — 2 3/2 and the 
total number of configurations becomes (3/2)A.* 

2. Mirror symmetric and centric symmetric atom pairs 
in ice.

In Pauling’s calculation of the zero-point entropy of ice it 
is assumed that all the possible configurations are so similar in 
energy that, even at the temperature at which they are fixed by 
freezing, they can be considered as equally probable. Pauling

* The demonstration given above is the result of a correspondance with 
Pauling. For the valuable help, which I have thus received, I wish to offer pro­
fessor Pauling my best thanks.
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expressed this (in “Nature of Chemical Bond’’ 2nd ed. 1945 p. 302) 
in the following words: “and that under ordinary conditions the 
interaction of non-adjacent molecules is such as not to stabilize 
appreciably any one of the many configurations satisfying these 
conditions with reference to the others.’’ The excellent agreement 
found by Pauling between the calculated and the found zero-point 
entropy of ice made such a great impression that this assumption was 
accepted without any serious examination. It is, however, possible 
that too great emphasis has been laid on this agreement. Giauque’s 
value for the zero-point entropy occurs as a small difference 
between two large values: Gordon’s6) spectroscopic value for the 
entropy of water vapour at 25° C and 1 atmos. (45.1 ±0.1) and 
Giauque’s5) thermically determined value for the difference 
between the entropy of water vapour at 25° C and 1 atmos. and 
of ice at 0° K (44.28 ± 0.05). It is perhaps possible that these 
values are not so accurately determined as the authors themselves 
think. In addition to the random errors, which are given in the 
above expressions, there may be systematic errors. We will there­
fore now try to investigate whether the assumption of Pauling 
has been justified.

As an introduction to the investigation of the energy content 
of the different configurations, we will attempt to find an ex­
planation for the reason why ice crystallizes differently from 
diamond, although the arrangement of the 4 adjacent atoms 
around an atom is the same in both cases, when we consider 
only the carbon and oxygen atoms and disregard the protons. 
The difference between the two arrangements can first be seen, 
when the six adjacent atoms around an atom pair are considered. 
The same circumstances, which cause the oxygen atoms in ice 
to be arranged in another way than the carbon atoms in diamond, 
can also be expected to make the configurations in ice ener­
getically different.

In diamond, the arrangement around an atom pair is always 
centre symmetric (see fig. 2). If the 6 adjacent atoms are projected 
onto a plane at right angles to the linkage between the two atoms, 
the 6 atoms form a regular hexagon.

In an ice crystal, the arrangement around oxygen atom pairs, 
which lie in the same puckered hexagonal layer, is centre sym­
metric, as in diamond; but around atom pairs, whose atoms lie
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in different layers, the arrangement is mirror symmetric (see fig. 2). 
If the 6 adjacent atoms are projected onto a plane perpendicular 
to the linkage between the two atoms, the adjacent atoms coincide 
in pairs. In ice x/4 of the atom pairs are in mirror > symmetric 
and 3/4 in centric symmetric positions. It is probably not possible

Mirror 

symmetric

Seen from the side Seen from above
Fig. 2. Centre symmetric and mirror symmetric positions of oxygen atoms in ice. 

to construct a crystal in which more than x/4 of the atom pairs 
are in mirror symmetric positions, if the arrangement around all 
the atoms is to be regularly tetrahedral. In an ice crystal, there 
are presumably as many mirror symmetric atom pairs as possible 
present.

The centric symmetric arrangement in diamond can be ex­
plained as a result of the repulsion between the electrons around 
the 6 adjacent atoms. But why does the mirror symmetric arrange­
ment occur in ice and even in as high a proportion as possible? 
This suggests that the mirror symmetric position for water mole­
cules is more stable and poorer in energy, than the centric sym­
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metric. If this is actually the case, then the distance between the 
atoms in mirror symmetric atom pairs ought to be less than the 
distance between atoms in centric symmetric atom pairs.

Accurate measurements on ice crystals have been carried out 
by Helen D. Megaw7). She made her measurements in order 
to investigate whether there was a difference between ice from 
heavy and from light water, but she found no difference. From 
her measurements it is possible to calculate the ratio c/a between 
the hexagonal main axis and the secondary axes perpendicular 
to the main axis to 1.6283, varying between 1.6276 and 1.6287 
for both heavy and light ice. In the ideal structure, with equally 
large distances and equally large angles everywhere, the ratio is

= 1.6283distance in centre symmetric atom pairs.

gives x
plained by inequality in the angles between the linkages of the 
atoms; but this inequality can scarcely be considerable, since no 
reasonable cause for this can be seen. The mirror symmetric 
linkages must therefore be several 1/10 °/0 shorter than the centre 
symmetric. In consideration of the slight compressibility of ice 
(1.2-IO5 per bar) this is not an inconsiderable difference.

If the mirror symmetric linkage between the H2O molecules 
is shorter than the centric symmetric, this linkage must also be 
more stable and poorer in energy than the centric symmetric. 
This gives us a cause for the fact that ice crystallizes hexagonally 
and not regularly.

y I == 1.6330. The deviation from this figure is small, but c/a =

must be considered as indubitably significant. If the deviation is 
to be explained by differences in atomic distances, the distances 
in mirror symmetric atom pairs must be 0.55 °/0 shorter than the 

(Q+2-r):

— 0.9945). A little of the deviation may perhaps be ex-

3. An electrical model of the H2O molecule.
One may well ask, why the mirror symmetric linkage is firmer 

than the centric symmetric. In order to attempt to find an ex­
planation for this, we will consider the forces which hold the 
molecules together in ice crystals. A H2() molecule is an electrical 
dipole. Assuming that electrostatic forces hold the molecules 
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together in ice just as electrostatic forces are responsible for 
holding the ions together in sodium chloride, we will attempt to 
calculate, from plausible assumptions, the electrostatic internal 
energy.

Our assumption is not a contradiction of the general practice of 
designating the bonds between molecules in ice as hydrogen bonds. 
The so-called hydrogen-bonds must principally be considered to be of 
electrostatic nature.

In order to calculate the effect of the electrostatic forces 
between molecules of ice, we must construct an electrical model 
of a water molecule. We know that the positive charges on the 
nuclei form an isosceles triangle with the oxygen nucleus at the 
apex and the two protons on the base line. In the water vapour 
molecule, according to Mecke3) the sides are 0.97 Å., but in the 
molecules of ice, according to Cross, Burnham and Leighton8) 
and Pauling4) they are slightly larger, ca. 0.99 Å. The apical 
angle in the water vapour molecule, according to Mecke, is 
ca. 106°, hence nearly equal to the tetrahedral angle 109.5°. Even 
if it is not certain that the protons in an ice crystal lie exactly 
on the linkages between the oxygen atoms, they must lie very 
close to them, and in our model, we will assume that they lie 
on the linkages (fig. 3 a). The three nuclei are encircled by 10 
electrons. Two of the orbits are quite close to the oxygen nucleus 
at the apex, and the 8 remaining electrons circle in pairs in 4 
eccentric orbits, which radiate tetrahedrally from the oxygen 
nucleus (comp. Barnes1), Mulliken5) and Bernal and Fow­
ler2)) (fig. 3 b). The two protons lie within two of these eccentric 
orbits. The electron orbits completely screen the positive charge 
of the oxygen nucleus. They also screen a considerable part of 
the charge of the protons, but give an excess of negative charge 
in the two eccentric orbits which do not contain protons. We will 
therefore consider an ice molecule from the electrostatic view­
point as a regular tetrahedron of radius 0.99 Å. with positive 
charges in two corners and negative charges in the other two 
(figs. 3c and 3d). As we shall see later, it is of little importance 
for our calculations whether the tetrahedron-model should in fact 
have deviated somewhat from regularity.

It is known from measurements of the dielectric constant of 
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water vapour that the dipole moment of the water molecule is 
1.87 Debye. If the tetrahedral model is to have this dipole moment, 
the electrical charges in the corners must be ± 0.171 e (e = the 
electronic charge). Hence the electrons screen most of the elec­
trical charge of the protons, and only give small negative charges 
in the remaining corners. In ice these tetrahedra are placed

Fig. 3. Electrostatic model of a water molecule: a position of the positive charges 
in a molecule, b the electron orbits, c and d two different representations of the 

regular tetrahedron model used.

at a mutual distance of 2.76 Å., calculated from their centres. 
We will therefore imagine an ice molecule as a sphere of radius 
1.38 Å., inside which 4 electrical charges are placed in a regular 
tetrahedral arrangement, as described above.

This molecular model of course only represents a rough ap­
proximation to the actual molecule with the negative electricity 
of the electrons distributed over large volumes. The simplicity of 
the model, however, permits many calculations to be performed 
with it, and if these give results, which agree with experience, 
it is probable that the model gives us a good representation of 
the electrical structure of the H2O molecule.
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4. The electrostatic energy between adjacent molecules 
in ice.

Two adjacent molecules in ice can have 6 different positions 
relative to each other. These are presented in figure 4. Position 
no. 1 can suitably be designated as inverse mirror symmetric 
(niSi) because the electrical charges at symmetrical places have

1 Inverse 
mirror symme trie

2. Obligue 
mirror symmetric

3. Obligue 
mirror symmetric

+

4. Inverse 
centre symmetric

- + +
¿T Obligue 

centre symmetric
6. Obligue 

centre symmetric

Fig. 4. The 6 positions relative to each other of two adjacent molecules in ice.

opposite signs. No. 2 and no. 3 are energetically alike and can 
be designated as oblique mirror symmetric (ms2 and ms,¡).

Similarly, two molecules in centric symmetric positions can 
have three different relative positions (see fig. 4). No. 4 will be 
designated as inverse centric symmetric (csj) because the elec­
trical charges at symmetrical places have opposite signs. The two 
remaining (no. 5 and no. 6) are energetically alike and can be 
designated as oblique centric symmetric (cs2 and cs3).

The electrostatic energy, to be overcome on separating two 
electrical molecular models (A and Æ) is EAB = (0.171 e)2 27 1/r, 
where r is the distance between two charges, and the summation 
must include all 16 combinations of two charges, one from each 
molecule.
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These energies are given in table 1, column 2, headed tetra­
hedron, r — 0.99 Å. It can be seen that the energy is rather 
different for the 4 possible positions. These EAB values given in 
italic type are those with which we shall deal in the following 
section.

Table 1.
Electrostatic energies EAB between adjacent molecules in ice, given 

in IO-12 erg.

Tetrahedron triangle

r =
0.99 Ä

r =
0.69 Â

r =
0.46 Ä

r =
0.276 Â

infinit, 
small

r =
0.99 Ä

Mirror sÿm. inverse (zns1) . . 0.5067 0.312 0.261 0.240 0.220 0.387
— — obliq. (ms2, ms3) 0.4319 0.217 0.144 0.105 0.055 0.309

Centric sym. inverse (cs1). . . 0.4117 0.191 0.111 0.058 0.000 0.290
— obliq. (cs2, cs3). 0.4792 0.279 0.233 0.195 0.165 0.355

In order to obtain some idea of the significance of taking the 
radius to be 0.99 Å., the other columns in table 1 give the energies 
for smaller tetrahedra (r = 0.69, 0.46 and 0.276 Â. respectively) 
and for an infinitely small dipole. In all cases, it was of course 
assumed that the electrical charges had such a size as to give 
the dipole moment 1.87 Debye. It will be seen that the energy 
falls, when the model is made smaller. The fall is initially rapid, 
but later becomes slow. On the other hand, the differences 
between the energies of the different positions increase, but 
this increase is rather slow. The figures show the importance 
of not being satisfied with assuming an infinitely small dipole, 
but using a more developed picture of the distribution of the 
charges.

The last column in table 1 shows the energy values obtained 
by using as model a triangle with apical angle 109.5° and sides 
0.99 Å., and with two equally large charges (0.342 e) placed on 
the base, and a negative charge, twice as large (—0.684 e) at the 
apex. It can be seen that this triangular model gives slightly less 
energy than a tetrahedron of radius 0.99 Å., but the differences 
between the energies are about the same. Triangular models, 
placed in the tetrahedral orientation, which is, however, not very 
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probable for them, thus give similar energies as tetrahedron 
models. Hence it may be concluded that the results, drawn from 
the following discussion, would not have been altered appre­
ciably, if another tetrahedral model had been used, in which the 
two negative charges had been moved slightly nearer to the 
centre and the tetrahedron had thus not been regular. It would 
have been reasonable to use such a model, if it had not made 
the calculations more difficult.

Bernal and Fowler2), who first tried to calculate the elec­
trostatic energies of ice crystals, used, for their calculations, a 
triangular model with positive charges (0.49 e) on the base and 
a negative charge, twice as large, placed on the bisector of the 
apical angle, slightly below the apex. This model does not fit 
our views on the electrons in the water molecule, and can not 
explain the tetrahedral layering of the molecules in ice. It is not 
easy to see why Bernal and Fowler have used this triangular 
model. They themselves point out the tetrahedral placing of the 
8 external electrons of the molecule and the possibility of using 
this to explain the tetrahedral grouping of the molecules in ice.

5. The electrostatic lattice energy of ice crystals.
The differences between the energies of inverse and oblique 

positions are, according to table 1, considerable:

EABms1 — EABms2 = 0.0748 10-12 erg. 
EABcs2 — Eabcs1 = 0.0675 10~12 erg.

Since, at 273° K, kT is equal to 0.0374 x 10“12 erg., it must be 
expected that at the melting point njsx-positions will be present 
in greater amount than ms2 and ms3 and that cs2- and cs3-positions 
will be present in greater amount than csj-positions, and the 
preferences must be expected to be even more pronounced at 
lower temperatures. The size of this temperature dependence 
will be considered later. We will here just assume that at low 
temperature the inverse position (msi) will be predominant among 
the centric symmetric, while at high temperature the inverse and 
the two oblique positions will approach equal probability.

This result is not in opposition to the observations made by 
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WoLLAN, Davidsen and Shull10) on the diffraction of neutron 
beams. These authors have shown that in ice “on the average 
two hydrogen atoms will be found close to a given oxygen atom”, 
and that the arrangement on the whole is irregular. This does 
not contradict the view given above, as according to that view 
there should be no periodic regularities in the placing of the 
protons in the crystal lattice of ice.

At low temperature the mean electrostatic lattice energy 
between adjacent molecules in an ordinary hexagonal ice crystal 
will be in mean x/4 EABmsx + 3/4 EABcs2 and at high temperature 
(which, however, is far from being reached at the melting point 
of ice) it will be: 712 EABmsx + 7e EABms2 + x/4 EABcsx + x/2 
EABcs2. In a hypothetical ice crystal with diamond structure, in 
which all positions are centric symmetric, the electrostatic energy 
between adjacent molecules would be in mean: at low temperature 
Eabcs2 and at high temperature x/3 EABcsx + 2/3 EABcs2. The 
total lattice energy between all adjacent molecules is obtained by 
multiplying these mean values by 2N, where N is the number 
of molecules. In table 2 are presented the lattice energies thus 
calculated, given in kcal/gmol.

Table 2.
The electrostatic lattice energy of ice crystals, calculated from the 

energies between adjacent molecules.

Ordinary hexagonal 
ice crystal

Hypothetic ice crystal 
with diamond structure

At low temperature..................
At high temperature.................

14.04 kcal/gmol.
13.21 —

13.88 kcal/gmol.
13.23 —

The electrostatic lattice energy must be assumed to constitute 
the main part of the heat of sublimation of ice. The values for 
hexagonal ice in table 2 are somewhat higher than the experi­
mentally determined heat of sublimation of ice: 12.14 kcal/gmol 
at 0° C. In order to obtain from the electrostatic lattice energy 
an accurate value for the heat of fusion of ice, it is, however, 
necessary to subtract the potential of the repulsive forces, which 
hold the molecules in place at a distance of 2.76 Å. and to add 
the potential of the van der Waal’s forces, hence a better agree-
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ment could scarcely be expected. Bernal and Fowler2) have 
shown that it is possible to obtain a heat of sublimation of the 
right order of magnitude by electrostatic calculation from their 
triangular molecular model. Using their estimated corrections for 
the repulsive forces (— 6.8), for the van der Waal’s attraction 
(+4.1) and for the attraction of next neighbours (+1.1), the 
latter however with opposite sign, we calculate for the heat of 
sublimation of ice:

at low temperature  
at high temperature

14.0 — 6.8 + 4.1 + 1.1 = 12.4
13.2 — 6.8 + 4.1 + 1.1 = 11.6

The electrostatic lattice energies in table 2 give us a possibility 
of obtaining a better understanding of the reason why ice crystal­
lizes hexagonally and not as diamond cubically. Admittedly the 
energies at high temperature are practically speaking the same 
for the hexagonal and for the cubic lattice, but at low temperature 
the lattice energy is 0.16 kcal/gmol higher for the hexagonal than 
for the cubic lattice, and as we shall see later, the melting point 
of ice must, in this connection, be considered as a low tempera­
ture. A difference in the lattice energies of 0.16 kcal/gmol is 
perhaps rather small to explain why the hexagonal lattice is to 
be preferred; however, it will later be shown that the difference 
increases to 0.42 kcal/gmol, when the electrostatic energies be­
tween molecules, which are separated by a single molecule, (next 
neighbours) are taken into consideration (table 4). For poly­
morphous compounds having a temperature of transformation 
in the region of ordinary temperatures, the heat of transformation 
is often no greater. Thus the heats of transformation between 
the different known modifications of ice lie within values of from 
0.016 to 0.304 kcal/gmol, and the heats of transformation for 
the solid modifications: of HCd is 0.248, of HBr 0.165 and 0.113, 
of HJ 0.126 and of H2S 0.108 and 0.361. For NH4C1 the two 
heats of transformation have been found to be: 0.200 and 0.427, 
for NH4NO3 0.402 and for CaCO3 0.30, all figures in kcal/gmol 
and according to Landolt-Börnstein, 3rd suppl. The heat of 
transformation for transformation of rhombic sulphur to mono­
clinic sulphur is 0.84. The molecule of sulphur is, however, 
also rather large, S8.
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6. The electrostatic energies between molecules of ice, 
which are separated by one or more molecules.

The electrostatic energies between molecules which are not 
adjacent have been ignored in the considerations so far described. 
However, the orientation of the other molecules around an 
adjacent molecular pair may be dependent on whether this pair 
is in centric symmetric or mirror symmetric position and whether 
this position is inverse or oblique. It is therefore possible that 
the electrostatic energies of the surrounding molecules could 
neutralize the differences in energy found for the 4 different 
positions of a molecular pair. If this was the case, the inverse 
and the two oblique positions would be equally probable and the 
proportion between them would be independent of temperature. 
We will therefore examine the electrostatic energies between mole­
cules which are not adjacent, more closely.

The electrostatic energies (E,lc) between two molecules, (A 
and C), which are separated by a single molecule (B), are far 
lower than the energies E4B between adjacent molecules, and the 
electrostatic energies (EAD) between two molecules (A and D), 
which are separated by two molecules (B and C), are even lower 
still. These molecules lie farther from each other and they are 
in addition more randomly orientated. A completely random 
orientation would reduce their contribution to zero.

Table 3 gives the result of a calculation of the electrostatic 
energies (EAC) between molecules, which are separated by one 
molecule.

The three molecules A, B and C can have a total of 72 different 
positions relative to each other. The energy for all these positions 
can be read off in the table.

A and C present either a positive or negative corner to B. Since 
the energy of the system can not be changed, when we invert 
all charges, however, we only need to examine the two possi­
bilities: that A and C present differently charged corners to B 
and that they present similarly charged corners to B. In the first 
case, when the energy is positive, we will designate the position 
as an «-position, and in the other case, when the energy is nega­
tive, as a ^-position. In ice, A and C must either both be in centric 
symmetric (cs) position to B, or one must be in centric symmetric
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Table 3. 
Electrostatic energies EAC between two molecules (A and C) in ice, 

separated by one molecule (ß), given in 10~12 erg.

A and C’s 
position to B a b A and C’s 

position to B a b

csx cs1.................. 0.0267 — 0.0450 csx ms¡......... 0.0439 — 0.0151
CSi CS2.................. 0.0611 — 0.0300 cs1 ms2................ 0.0194 — 0.0451
csY cs3.................. 0.0300 — 0.0300 cs^ ms3................ 0.0516 — 0.0451
C$a CS1.................. 0.0611 — 0.0300 cs2 mSj................ 0.0194 — 0 0516
cs3 CSj^.................. 0.0300 — 0.0300 cs3 msx................ 0.0451 — 0.0516
cs2 CS2.................. 0.0267 — 0.0267 CS% bJl S * * ••••••• 0.0439 — 0.0439
cs2 cs3.................. 0.0300 — 0.0611 cSg ms3. . ....... 0.0516 — 0.0194
^3 CS2.................. 0.0300 — 0.0611 ms 2 ••••••••• 0.0451 — 0.0194
cs3 cs3...................... 0.0450 — 0.0267 cs3 ms3................ 0.0151 — 0.0439

and the other in mirror symmetric (ms) position to B. Of the 6 
AC pairs around a B molecule, 3 are cs-cs and 3 cs-ms. Finally, 
both for cs- and ms-positions there are 3 possibilities: an inverse 
position (csj and msj) and two oblique positions (cs2 and cs3, 
ms2 and ms3). The symbol bcs1ms2 denotes a position, in which 
A and C present similarly charged corners to B, and A is in inverse 
centric symmetric position to B, while C is in oblique mirror 
symmetric position to B. Since the two oblique positions in the 
asymmetric AßC-system are no longer necessarily energetically 
alike, we must now differentiate between them.

This is done in the following way. When a molecule (A), as seen 
from an other molecule (B), must be turned through 120° clockwise in 
order to obtain an inverse position to it, we will denote the position 
as a 2-position (cs2, ms2). When the same effect is obtained by turning 
it 120° counterclockwise, we will call the position a 3-position (cs3, ms3). 
For a-positions it is furthermore necessary to clear that the charges of 
the B molecule must be placed so that by turning the B molecule 120° 
clockwise, seen from A (or C) around an axis through the A (or C) 
molecule, the corner towards C (or A) is brought over to a corner with 
the same sign. Let us denote the other possibility as an a'-position. Qn 
mirroring and subsequent inversion of an A B C-system, 2-positions are 
changed to 3-positions, 3-positions to 2-positions and a-positions to a'- 
positions. Since mirroring and inversion do not change the energy, we 
need not consider a'-positions especially. A ¿-position on inversion be­
comes a ¿-position again.

A control of the correctness of the calculations is obtained in
Dan.Mat.Fys.Medd. 27, no. 1. 2
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the following way. It can be shown that the following rule is valid: the 
EAC-value f°r an a-position is numerically equal to the £xc-value f°r a 
¿»-position, if the indices are calculated for the a-positions according 
to the following rule: 1^2, 2->3, 3->l.

7. The electrostatic lattice energy of ice crystals calculated 
with consideration of the energies between non-adjacent 

molecules.
Six molecules are connected with a pair AB of adjacent mole­

cules. We consider the EAC-values of these 6 C-molecules cor­
rectly if we add half of their 6 E^c-values to the EAB-value in 
question. When calculating the lattice energy of the whole crystal 
from EAB-values, each EAC-value will be accounted for by twro 
adjacent molecular pairs (AB and BC). The calculation of such 
corrected ^AB -values is made difficult by the fact that the ratio 
between inverse and oblique positions depends on the tempera­
ture. In the following section, the calculation is performed for 
the two limiting cases, corresponding to high temperature and to 
low temperature. By high temperature we understand here a 
temperature at which the inverse and oblique positions, in spite 
of their different energies, are equally probable, not only within 
whole ice crystals, but also within the different types of positions 
(a and b, cs and ms). (This state, however, is far from being 
reached at the melting point of ice). By lowr temperature we 
understand a state in which inverse positions are quite pre­
dominant among ms-positions, and oblique positions are quite 
predominant among cs-positions (comp, table 6).

Around a mirror symmetric molecular pair in an ordinary 
hexagonal ice crystal, all AC-positions will be of the type 
cs-ms, and 2/3 of them will be a-positions, and 1/3, ¿-positions. 
Around a centric symmetric molecular pair 4 positions will be 
of cs-cs type and two of cs-ms type. Of the 6 positions, 2/3 will 
be of the a-type, and 1/3 of the ¿-type, and we will assume that 
this is also true within the cs-cs group and the cs-ms group.

If this assumption should not be justified, it will only serve to 
increase the inaccuracy of the assumption that all (3/t~)N configurations 
of an ice crystal are equally probable.
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By using the EAC-values in table 3 and the F4B-values in 
table 1, the corrected E'AB-values (EAB cor.) presented in table 4 
are obtained.

If these corrected EAB-values are used in place of those 
previously used, the electrostatic energies between molecules, 
which are separated by a single molecule, are taken into con­
sideration in the correct way.

Table 4.
Electrostatic energies between two adjacent molecules in ice, cor­
rected for the EAC-values of the adjacent 6 molecules. The values 

are given in 10—12 erg.
A. Ordinary hexagonal ice crystal.

1. At low temperature.

mirror

2. At high temperature.

0.4552
0.5143

AB
AB
AB
AB

0.5067
0.4319
0.4117
0.4792

0.5196
0.4781
0.4532
0.5143

0.0129
0.0462
0.0415
0.0351

EAB WEAC eab cor-

sym. inverse (msj)
— oblique (ms2, 

sym. inverse (cs1)
— oblique (cs2,

centric

AB mirror sym. inverse (msj......................
AB — — oblique (ms2, ms3)..............
AB centric sym. inverse (csj........................
AB — — oblique (cs2, cs3)..................

B. Hypothetical ice crystal wi1

0.5067
0.4319
0.4117
0.4792

th diamon<

0.0328
0.0394
0.0430
0.0351

i structure

0.5395
0.4713
0.4547
0.5143

EAB 6/2 EAB cor.

1. At low tempei

AB centric sym. inverse (cs1)........................
AB — — oblique (cs2, cs3)................

rature.

0.4117
0.4792

0.0611
0.0220

0.4728
0.5012

2. At high temperature.
AB centric sym. inverse (CS1) ...................... . . 1 0.4117 0.0435
AB — — oblique (cs2, cs3) .......... ... J 0.4792 0.0351

The results of similar calculations for a hypothetical ice 
crystal with diamond structure are also given in table 4. At low 
temperature it is assumed that the majority of positions is oblique 

2‘ 
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(cs2 and cs3) and at high temperature that the positions csj, cs2 
and cs3 are equally frequent.

Calculations on the energies between molecules, which are 
separated from each other by two or more molecules, would be 
almost impossible to perform. The energies EAD between mole­
cules A and D, which are separated by the two molecules B and 
C, will, however, only contribute a very small effect, and the 
effect will tend to make the differences between the 4 “corrected” 
EAB slightly larger. This can be estimated by considering systems 
of 4 consecutive molecules A, B, C, D, the outermost molecules 
of which are simplified to real dipoles by coalescence of the three 
outermost charges in the tetrahedral models to a single charge 
at the centre of the triangle formed by the corners at which they 
are placed. It is permissible to make this approximation when 
it may be assumed that the three ways in which the three charges 
can be placed are equally probable. Molecules, separated from 
each other by more than three molecules, will be so randomly 
orientated with respect to each other that their mutual internal 
energy can be considered as being, on the average, insignificant.

With the corrected EAB from table 4, the following differences 
between the energies for inverse and oblique positions are ob­
tained, (the figures expressed in 10~12 erg):

With corrected i'AB-values
Previous calcula­
tion with un cor­

rected Eab- 
values

0.0748
0.0675

^ABmsi EABms2............

EaBcs2 ^ABCS1................

Low temp.
0.0415
0.0611

High temp.
0.0682
0.0594

It will be seen that consideration of the EAC-values has made 
the differences less. It is, however, only the difference between 
the two types of ms-bonds, which has become appreciably less, 
and only at low temperature. The differences are still larger than 
kT at 0°C (0.0374 X 10~12 erg). Our previous considerations on 
the predominance of inverse positions among ms-positions and 
oblique positions among cs-positions, are therefore still valid.

If the electrostatic lattice energy is calculated (by the method 
given on p. 14) from the corrected EAB, the figures given in 
table 5 are obtained.
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Table 5.
The electrostatic lattice energy of ice crystals, calculated from the 

corrected EAB-values given in table 4.

Ordinary hexagonal 
ice crystal

Hypothetical ice crystal 
with diamond structure

At low temperature................
At high temperature...............

14.93 kcal/gmol
14.32

14.51 kcal/gmol
14.32

These electrostatic lattice energies are about 1 kcal higher 
than those calculated in table 2. At high temperature the difference 
between the lattice energies for hexagonal and for cubic ice is, 
as in the previous calculations, extremely small, but at low 
temperature the lattice energy for hexagonal ice is 0.42 kcal higher 
than for cubic ice. According to the previous calculation it was 
only 0.16 kcal higher. The new higher value makes it easier to 
understand the reason why ice crystallizes hexagonally and not 
cubically. Even at the melting point of ice, as we shall see later, 
/nsj- and cs2- and cs3-positions are so predominant that the lattice 
energy must be assumed to lie nearer to that calculated for low 
temperature than to that calculated for high temperature. 8 

8. Quantitative calculation of the percentage of inverse 
and oblique positions.

Difficulties are encountered in exact calculation of the amount 
of inverse and oblique positions in ice. As an approximation, 
we will try to express the probability of the different positions by 
a Boltzmann e-function:

W = e~E,kT

where E is the energy of the position. If no correlation existed 
between positions of pairs close to one another, it can be 
shown that this formula is correct. There is, however, a con­
siderable correlation; this appears from the fact that, with­
out correlation, the number of configurations of an ice crystal 
should be 32N, while it is actually only (3/2)‘V- We may hope 
that, nothwithstanding this, the formula will be a useful approx-
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imation. Using the corrected EAB-values* from table 4, we have 
calculated the percentages of the 4 different positions at four 
different temperatures. The results are given in table 6.

Table 6.
Calculated percentages of inverse and oblique positions in ice.

273° K 136.5° K 90° K 68.25° K

Inverse ms-positions .................. 68.4 % 90.4 % 97.7 «/o 99.44 °/0
Oblique ms-positions.................. 31.6 - 9.6 - 2.3 - 0.56 -
Inverse cs-positions.................... 9.1 - 2.0 - 0.38 - 0.08 -
Oblique cs-positions.................... 90.9 - 98.0 - 99.62 - 99.92 -

The figures in table 6 show that, even at the highest possible 
temperature, the melting point, the ratio between inverse and 
oblique positions is still far from being the statistical ratio 1:2. 
At the boiling point of liquid air (90° K) only about 1 per cent 
of the oblique mirror symmetric and inverse central symmetric 
positions remain.

When the figures in table 6 are used, it must not be forgotten 
that they are rather uncertain; partly because they rest on the 
assumption of a rough molecular model, and partly because the 
forces between molecules, which are not adjacent molecules, are 
only considered incompletely, and finally because the use of 
Boltzmann’s equation is only an approximation. On the whole, 
however, the figures are to be considered as a useful approx­
imation.

9. The effect of temperature on the rate at which the 
equilibrium between inverse and oblique positions is 

reached.
The equilibrium between the energetically different inverse 

and oblique positions must be reached very rapidly at the melting 
point of ice. This can be concluded from the fact that the heat 
of fusion of ice has a very well defined size (1.4357 ± 0.0009

* It is preferred to use the mean of the values corresponding to high tem­
perature and to low temperature. The corrections for the Ead values have such 
a sign that it seems reasonable to use mean values in place of values nearer to the 
low temperature values.
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kcal/gmol. Cf. also the use of the ice calorimeter). If only 0.1 per 
cent of the positions are changed from inverse to oblique, this 
would change the heat of fusion by 0.0012 kcal/gmol, hence 
more than the indicated uncertainty of the determination.

If the temperature is lowered, a temperature range will 
finally be reached, at which the equilibrium between the positions 
of the molecules freezes in. Murphy10 11) has given some ob­
servations on how cooling of an electrically polarized ice crystal 
to the temperature of liquid air (90° K) freezes a permanent 
dipole moment into it. This shows that at this temperature the 
molecules in ice have ceased to change their orientation. Giauque 
and Stout5), who have carried out very accurate measurements 
on the heat capacity of ice down to very low temperatures, write: 
“At temperatures between 85 and 100° K the attainment of 
thermal equilibrium in the solid was very much less rapid than 
at other temperatures. For this reason the heat capacity measure­
ments in this region are somewhat less accurate than the others.” 
This slow attainment of equilibrium is, according to them, 
presumably due to the initial stages of excitation of some new 
degrees of freedom. They suspect that these new degrees of 
freedom are associated with the dipole orientation mechanism. 
It is tempting to explain slow attainment of equilibrium as 
due to fixation by freezing of the equilibrium between in­
verse and oblique positions. According to table 6, in this 
temperature range the energetically preferred positions are 
already so predominant (they constitute about 99 °/0) that 
it might seem reasonable to suppose that differences in the 
fixation of the configuration by cooling have had a per­
ceptible, but only slight influence. In order to investigate 
this, a theoretical calculation of the specific heat of ice is 
given and is compared with experimental data in the following 
chapter.

10. The heat capacity of ice.
In ice the H2O molecules can be considered as rigid systems, 

vibrating and oscillating without undergoing changes themselves 
(the slowest atomic oscillation in a H2O molecule (1590 cm-1) con­
tributes, even at the melting point, only 0.03 to the heat capacity
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(Cy in cal/mol/degree) according to Einstein’s function). Thus 
the ice molecules only contain heat energy in the form of “hindered 
translations” and “hindered rotations”, we will call these move­
ments vibrations and oscillations, respectively.

From the Raman spectrum of ice 8) we know that the wave 
number of the vibrations is 210 ± 2 cm-1 and that of the oscil­
lations 700—900 cm-1. The observed frequency 210 ± 2 must 
be due to vibrations, as it changes in the ratio j/18/20 from light 
to heavy ice, and the frequency 700—900, to oscillations as it 
changes in the ratio j/1/2 from light to heavy ice. The spectro­
scopic vibration frequency is in good agreement with the fre­
quencies calculated from the volume compressibility of ice. For 
the most rapid vibration in the direction of the main axis we 
have calculated 223 cm-1, for vibrations perpendicular to the 
main axis and to the line between two adjacent molecules, 
218 ciiF1, and for the vibrations perpendicular to the two former, 
203 cmL. The calculations are carried out on the assumption 
that the forces between the molecules are pure central forces, 
not influenced by valency angle forces, and that the compres­
sibility is the same in all directions.

A heat capacity of ice (Cu(Debye)) is calculated from the 
spectroscopic frequencies as the sum of three Debye functions 13) 
corresponding to 210 cm 4 (Cp(210)) and three others corre­
sponding to 800 cm1- (Cp(800)). Table 7 contains the results.

Table 7.
Heat capacity of ice, determined spectroscopically.

T°K Cp(210) Cv (800) Cv (Debye)

10.0 ................................... 0.017 0 0.017
15.05.................................... 0.058 0.001 0.059
20.1 ................................... 0.137 0.002 0.139
30.1 ................................... 0.452 0.008 0.460
37.6 ................................... 0.823 0.016 0.839
50.2 .................................... 1.582 0.039 1.621
60.2 .................................... 2.197 0.067 2.264
75.2 .................................... 2.996 0.131 3.127

100.3 .................................... 3.947 0.309 4.256
150.5 .................................... 4.918 0.933 5.851
200.7 .................................... 5.337 1.741 7.078
273 .................................... 5.609 2.822 8.431
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Fig. 5. Heat capacity of ice (Cv). Curve I: spectroscopic calculation. Curve II:
Same with the configuration contribution added. 0: Determinations of Giauque 

and Stout.

In fig. 5 curve I represents the spectroscopically calculated 
values (C„(Debye), and Giauque and Stout’s5) experimental 
values for Cp (which do not deviate appreciably from C„) are 
introduced as small circles. It can be seen that the general trend 
is not badly reproduced.

We will now calculate the contribution to Cv of the change 
in configuration in ice. Let ams be the fraction of mirror sym­
metric positions, which are oblique, Qms the difference in energy 
between inverse and oblique mirror symmetric positions and 
Cy(ms) the contribution to Cv of the change of mirror symmetric 
positions from inverse to oblique. Using Boltzmann’s e function 
as an approximation we obtain :

e-Qms/HT

~2
d«m. = Qm¡ 2e°-'Rr
(IT RT2 (eQ"IRT+ 2)a'

2’

and similarly for centre symmetric positions (acs fraction of 
inverse positions):
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o p-QclRT dcics = 9CS_____2 eQctlRT
dT RT2 (2 eQ“IRT+ l)2’

/O \2 a
C (CS) = ( — J ----- O IRT------ o*v \rt) (2 eQJRT+1)2

By introducing 0.793 and 0.871 kcal/gmol as values for Qms 
and Qcs respectively, (mean of values for high and low tem­
peratures) these equations lead to the contributions to the heat 
capacity given in table 8.

Contributions (Cv(ms) and Cv(cs)) to the heat capacity of ice from 
the change of configuration with temperature. Qms — 0.793 and 

Qcs — 0.871 kcal/gmol.

Table 8.

T 90° K 136.5° K 273° K

Cv(ms) 0.442 0.743 0.470
Cv(cs) 0.269 0.596 0.636

Cv(ms) + Cy(cs) 0.711 1.339 1.106

These contributions, when added to the spectroscopic Cv 
values, give a curve for the heat capacity (curve II in fig. 5) 
which deviates more from the experimental values than does the 
spectroscopical curve itself. This is not a serious objection against 
our calculated Q-values, as the spectroscopic calculation of the 
heat capacity of solids by means of Debye functions for sub­
stances with polyatomic molecules generally is only a poor ap­
proximation. A more serious objection is the high value (0.711) 
of the contribution to the heat capacity at the temperature (90° K), 
at which Giauque and Stout observed their small thermal irre­
gularities. The contribution in this temperature range should 
have been considerably less than 0.1 in order to be in agreement 
with Giauque and Stout’s observations. Small changes in Q cannot 
remove this disagreement. The contribution (Cv(ms) + Cv(cs)) 
has a maximum in the neighbourhood of T = Q/2R and with 
our Q-values the maximum lies at about 200° K. If the Q-values 
had been twice as high the maximum would have been removed 
to about 400° K and the contribution would have been:
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at 90° A 0.030, at 136.5°K 0.276, at 273°Æ 1.339

Also with lower Q-values acceptable values for the contribution 
can be obtained, but the lowering must be very great. If the 
Q-values had been 10 times as small, the contributions would 
have been:

at 90°K 0.172, at 136.5°A 0.067, at 273°Æ 0.021, 

and first with Q-values twenty times lower acceptable values 
would have been reached:

at 90°Æ 0.047, at 136.5° K 0.021, at 273°Æ 0.005.

We must conclude that acceptable values for the contribution to 
the heat capacity of ice from changes in the configuration equi­
librium cannot be obtained with our formulas and with Q-values 
in reasonable agreement with our calculations based on the tetra­
hedron model.

It is most probable that the use of the Boltzmann function 
has been an unsatisfactory approximation, and that the «-values 
are much smaller than those in table 6 (~0.1 °/0 instead of 
1 °/0 at 90° K). When the number of configurations is lowered 
from 32A to 1.5N on account of correlations (see p. 21) it does 
not seems improbable that the energy differences between the 
configurations have a strongly increased effect on the configuration 
equilibrium.

11. The zero-point entropy of ice.
The views on the structure of ice, presented here, are presum­

ably correct in the main lines, even if the calculated figures must 
be treated with some caution. If, however, they are correct in 
the main lines, then Pauling’s explanation of the zero-point 
entropy of ice can not be used. It requires that the energetic 
difference between the possible orientations of the molecules in 
ice must be so small that they are all almost equally probable, 
even at the low temperature at which they are fixed by freezing, 
and this seems to be very far from the case.

As a possible explanation for the zero-point entropy of ice, 
Giauque and Ashley5) have proposed the existence of ortho- 
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and para-states in the H2O molecule. Against this view, however, 
is the fact that a similar zero-point entropy (0.77 kcal/gmol, Lang 
and Kemp12)) has been found for heavy water. According to 
Giauque and Stout5, the ortho-para-hypothesis should give a 
considerably smaller zero-point entropy for heavy water than 
for light.

The question of the cause for the zero-point entropy of ice, 
therefore, for the present, remains open.

Summary.
1. A crystal in which every atom has 4 neighbours in regular 

tetrahedral arrangement is either cubic or hexagonal. In a cubic 
crystal the arrangement around two neighbours is always centre 
symmetric (see fig. 2), but in a hexagonal crystal the arrangement 
around two neighbour atoms is in some cases (maximally in a 
fourth of the cases) mirror symmetric and only in the rest centre 
symmetric. The fact that ice crystallises hexagonally and that in 
ice a fourth of the bonds are mirror symmetric suggests that the 
bond energy between two H2O molecules in mirror symmetric 
position is greater than that between H2O molecules in centre 
symmetric position. Earlier measurements by H. D. Megaw show, 
in agreement with this suggestion, that the mirror symmetric bond 
in ice is actually x/2 °/o shorter than the centre symmetric.

2. Using a tetrahedron with positive charges on two corners 
and negative charges on the other two as a model of a H2() 
molecule (fig. 3), the suggestion given above can be supported. 
For the ordinary hexagonal ice crystal the electrostatic lattice­
energy is calculated to 14.91 kcal/gmol and for a hypothetical 
cubic ice crystal to 14.51 kcal/gmol. These values are valid for 
low temperatures. For reasons given in the following, the values 
increase with temperature and approach each other somewhat.

3. An ice crystal can posses a large number of different 
configurations (1.5A, where N is the number of molecules). The 
reason is that both centre symmetric and mirror symmetric 
positions can be either inverse or oblique (see fig. 4). It has been 
assumed that all these configurations have nearly the same lattice 
energy (Pauling). Using the tetrahedral model described above 
it is found, however, that the electrostatic bond energy is con- 
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siderably greater for the inverse mirror symmetric and for the 
oblique centre symmetric than for the two other positions (see 
table 4).

4. In an ice crystal the number of the two bond types with 
the highest bond energy must increase with decreasing tempera­
ture at the cost of the two other types. By means of Boltzmann’s 
e-function, approximate values are calculated for the ratio be­
tween inverse and oblique positions at several temperatures 
(table 6). Even at the melting point the ratio is far from the 
statistical one, corresponding to equal bond energy.

5. At the melting point the configuration of ice changes very 
rapidly, but at the temperature of liquid air (90° K) the con­
figuration freezes in. At this temperature, according to Boltz­
mann’s e-function, about 99 °/0 of the positions are the most 
stable inverse mirror and oblique centre symmetric positions 
(see table 6). Consequently it could seem reasonable that the 
irregularities in the thermal behaviour of ice in this tempera­
ture range, found by Giauque and Stout, were rather insigni­
ficant.

A calculation, however, revealed that even the small proportion 
of about 1 °/0 oblique mirror and inverse centre symmetric 
positions should create irregularities much greater than those 
observed by Giauque and Stout. It is suggested that the ap­
plication of Boltzmann’s e-function here represents a poor ap­
proximation, and that at 90° K the most stable positions pre­
dominate to a proportion of perhaps 99.9 °/0.

6. If the 1.5X configurations of an ice crystal are not all 
equally probable at the temperature when the configuration 
freezes in, then the zero-point entropy of ice must be smaller 
than Pauling’s value R In 1.5 = 0.806 kcal/gmol/degree. The values 
in table 6 suggest that the value of the zero point entropy should 
be only about a hundredth of this value. It is not yet possible 
to give another explanation for the experimentally found value 
0.82 ± 0.15.
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IL
CHANGE IN CONFIGURATION AND 

MOLECULAR TURNS

1. Information, gained from the dielectric properties of ice.
It is mentioned in part I of this series that ice changes con­

figuration very frequently at the melting point, and that its con­
figuration is first frozen in near the temperature of liquid air 
(ca. 90° Æ).

Investigations on the dielectric properties of ice have yielded 
more accurate information about the power of ice to change 
configuration. P. Debye1) has shown that it is possible to explain 
the dielectric properties of ice by assuming that its dipole mole­
cules, under the influence of thermal movements, frequently 
turn. In the absence of external electrical forces, the molecules 
are orientated so that their dipole moments are mutually neu­
tralized, but under the influence of an external electrical force 
the molecules become arranged so that the ice has a dipole 
moment in the direction of the force. Debye writes that under 
the influence of a field strength of 1 volt/cm it is only necessary 
for one molecule in 5 million to turn in order to produce the 
dipole moment which the ice obtains under the effect of this field 
strength. The rate at which the orientation of the molecules takes 
place can be investigated by subjecting ice to an alternating 
current field. At low frequencies the molecules have time to 
adjust themselves to the field, and a dielectric constant equal to 
the static is found; but if the frequency is increased, a frequency 
range can be reached, at which the molecules of ice do not have 
time to adjust themselves, and at sufficiently high frequencies 
ice possesses a dielectric constant, corresponding only to the 
electron- and atom-polarization of the molecules.
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Smyth and Hitchcock2) have performed measurements of 
this type. From their measurements Dorsey3) has calculated, 
by means of Debye’s equations, values for r, the relaxation time 
for the molecular turns in ice. Table 1 gives these values for a 
few temperatures. Values for n = 1/r, the rate of turns performed 
by a molecule, are also given in the table.

Table 1.
Relaxation time (r) and rate (n — 1/r) of molecular turns, 

determined dielectrically.

t° c 0° — 30° — 70°

T X 106 sec........................... 1.205 25.3 1467
n X 10-6 sec-1.................. 0.831 0.0395 0.00068

No great accuracy must be ascribed to these calculations of 
T and n. Debye’s equation does not reproduce Smyth and Hitch­
cock’s measurements quite exactly, especially not at temperatures 
of below —30°. According to W. Kauzmann’s4) opinion, the 
Lorentz correction used for the internal field is probably too 
large. This correction makes the n values ca. 16 times higher. 
It is not improbable that all the n values are e. g. 5 times too high.

From the decrease of n in the interval 0° to —30°, an energy 
of activation E for the dipole turns of 13.4 kcal/gmol is calculated 
by means of the expression E = Rdlnn/d (1 /r). Since Dorsey 
has smoothed the figures of Smyth and Hitchcock rather strongly, 
I have carried out a new calculation of n and E from Smyth 
and Hitchcock’s unsmoothed figures. This led to almost the 
same E value (13.5 kcal/gmol). From the same experimental 
material Kauzmann has calculated 12.2 kcal/gmol. He has pre­
sumably arrived at the lower value by also considering the more 
uncertain measurements at temperatures below —30°. From the 
measurements of Wintsch5) and E. J. Murphy6), Kauzmann 
calculates 9.3 and 14.6 respectively (here and in the future the 
energies of activation are always stated in kcal/gmol). Finally 
Højendahl7) by calculations from the size of the dielectric loss 
in Smyth and Hitchcock’s measurements, obtained the value of 
10.8. The equation presented by Højendahl for the loss angle,
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however, only fits after the introduction of an empirical coef­
ficient in place of the theoretical. Everything considered, a value 
for the pnergy of activation of ca. 13 seems to be most probable.

2. Energies of activation for turns of ice molecules, 
calculated from molecular models.

It is not possible by turning a single molecule to transform 
an ideal ice crystal of the type described in part I into a new 
stable configuration. A consequence of this is that even at the 
melting point changes in configurations can be rare: The thermal 
movements of the molecules will cause the disappearance of the 
forces which are responsible for the crystal structure, before the 
molecules can turn into a new configuration to any great extent.

If a new stable configuration is to be obtained, a ring of 
molecules must turn simultaneously. Such a ring contains at least 
6 molecules. The ring must fulfill the condition that the order 
of positive and negative corners is the same throughout the whole 
ring. This condition is only fulfilled by a small fraction of all 
existing rings. Turns of molecular rings, which fulfill this con­
dition, will certainly change the configuration of the crystal, but 
not its dipole moment, and hence the large dielectric constant 
of ice can not be caused by such turns. Turns of molecular 
rings must be rare, because a coordinated turning of many mole­
cules simultaneously is statistically not very probable and also 
and especially because a ring during its turning must pass a high 
energy threshold. If, as molecules, we. use the tetrahedral model 
described in the previous paper, and only consider the electro­
static forces, we obtain for the critical energy threshold (the energy 
of activation) a value of at least 21.6 kcal/gmol (for a six 
membered ring).

Details of the calculation. In a ring of the type described 
above, it is possible, by simultaneously turning all molecules through 
120° round one of their tetrahedral axes, to reach a new stable con­
figuration. The axis of rotation must be one of the two tetrahedral 
axes which do not lie in the ring itself. During the turning a critical 
energy threshold is passed when the molecules have turned through 
60°. In order to reach this threshold position, work must be performed 
against the electrostatic attraction between the molecules of the ring 
and the surrounding molecules and also between the molecules of the 
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ring themselves. If we only pay attention to the forces between adjacent 
molecules and disregard the small forces, which are active between two 
adjacent molecules, when the one molecule rotates around their common 
axis, we shall, for each of the molecules in the ring, only consider the forces 
from a single molecule outside the ring. Hence the problem is to bring two 
molecules (A and B) into the positions shown in fig. 1 a. Since, however, 
the calculations can only be made approximately and are easier to carry

Fig. 1. Fig. 2.
Fig. 1. Threshold position between a ring molecule and a molecule outside the 

ring, a correct, b modified. Rotation axes marked with an arrow.
Fig. 2. Threshold position between two ring molecules, a correct, b modified. 

Rotation axes marked with an arrow.

through for the modified position shown in fig. lb, the calculations, are 
performed for the latter. The modification consists of a rotation of the 
B molecule ca. 123/4° around an axis perpendicular to the plane of the 
drawing. This modification will only change the energy of activation 
slightly and will generally make it a little lower. The energy necessary 
for bringing the molecules to the threshold position is somewhat de­
pendent on the position of the negative and positive charges on those 
corners of the A molecule, which are furthest away from the B molecule, 
and on whether the initial position has been centric symmetric or mirror 
symmetric (the modified threshold position is the same in both cases). 
The calculation shows that 2.3 to 3.6, mean ca. 3 kcal/gmol, is necessary. 
If there are 6 molecules in the ring the consideration of the surround­
ing molecules alone thus causes an energy of activation of at least 
6x2.3 = 13.8.

The energy necessary in order to bring two adjacent molecules in 
a ring into the critical threshold position depends on the mutual positions 
of the molecules (mirror symmetric or centric symmetric, inverse or 
oblique) and of the position of the axes of rotation in the molecules. 
The lowest transfer of energy is required, when the molecules are in 
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mirror symmetric position and the axes of rotation lie in the same 
plane (fig. 2 a). The modified position 2 b, in which the mutual position 
of the molecules is more symmetric, is used in the calculations and can 
be expected to give a slightly lower energy of activation. The amount 
of energy necessary depends somewhat on the position of the charges 
on the corners of the molecules which in 2 b are furthest apart. A mean 
value of at least 1.3 kcal/gmol must be considered. Since there are at 
least six molecules in the ring, the contribution to the energy of activation 
from the electrostatic forces between the molecules in the ring must 
be at least 6x1.3 = 7.8. Hence the total energy of activation will be 
at least 13.8 + 7.8 = 21.6.

While turns of molecular rings do not change the dipole 
moment of an ice crystal, turns of a molecular row between two 
surface points will change the dipole moment. If the ice crystal, 
however, is not ultramiscropically small such turns of molecular 
rows can not be of much importance. Impurities in the ice will pro­
duce internal surfaces in it, but it is not probable that turns of 
molecular rows, beginning and ending in impurities in the crystal, 
will be decisive for the rate of dipole turns responsible for the 
dielectric properties of ice. In contrast to the many molecules 
in the interior, the few molecules which lie in the surfaces, both 
external and internal, of the crystal will be able to turn and thus 
alter the dipole moment of the ice crystal, but it is not probable 
that such turns of surface molecules can play any important role. 
Even in an ideal, pure ice crystal, however, lattice faults occur 
and at these fault sites single molecules will be able to turn and 
their dipole axes to change direction. We must here turn our 
attention to the lattice faults which are caused by the thermal 
movements of the molecules and which occur at a concentration 
determined by the temperature. There are two types of such fault 
sites: some, which are due to the incorrect mutual orientation 
of two neighbour molecules, there being either two protons or 
no protons between them, and others, which are due to ionization, 
the presence of H3O+ and HO“ ions in the lattice. We will in 
this paper examine the orientation fault sites.

3. Orientation fault sites as cause of molecular turns in ice.
If an ice molecule, on account of especially strong thermal 

movements, has turned around such a large angle that two protons 
3*
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have come between its oxygen atom and the oxygen atom of an 
adjacent molecule and no proton between its oxygen atom and 
the oxygen atom of another neighbouring molecule (fig. 3 b) the 
chance that it will turn back is very great; but it may happen 
that one of the neighbours has turned before it can turn back. 
In such a case the two sites with two or no protons respectively 
have been separated (fig. 3 c). Continued molecular turns can 

<2. Normal b. Orientation faults in adjacent linkages C. Orientation faults separated

Fig. 3. Formation of orientation fault sites.

separate the two sites completely and cause the appearance of 
two independent fault sites of opposite types: sites with two 
protons and sites with no protons between the oxygen atoms. 
These fault sites will migrate through the crystal until they meet 
a fault site of the opposite type with which they will recombine. 
Under the influence of formation and recombination of such fault 
sites, an equilibrium will be reached in the ice crystal with equally 
high concentration of these two types of orientation fault sites.

Two molecules, between which there is an orientation fault 
site, can easily turn, and every time a molecule turns the fault 
site will move over to an adjacent site and the dipole moment 
of the molecule will be turned through 90°. The fault sites will 
thus act as a kind of catalyst for the promotion of dipole turns.

If the tetrahedral model, previously described in part I, is 
used, the formation of such fault sites is estimated to require a 
accumulation of energy E of between 10.2 and 13.6 kcal/gmol, 
and the critical energy threshold for turns of the molecules 
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between which the fault site lies, can be estimated to be 2.5 
kcal/gmol. Consequently the concentration (c) of the fault sites 
will change with temperature according to the expression din 
c/dT — E/RT2, where E is a figure between 10.2 and 13.6, and 
the rate of turns (n') per fault site will change according to the 
equation din n'/dT = 2.5/RT2. The rate of turns per H2O mole­
cule (n = cxn) will therefore change according to the equation 
din n/dT = (E + 2.5)/ET2. The apparent energy of activation 
for the number of turns must therefore lie between 12.7 and 
16.1. The energy of activation for dipole moments estimated 
from the dielectric properties of ice was 13. The calculation 
shows that it is permissible to assume that the dipole turns which 
are required by Debye’s theory are the turns made by the mole­
cules at the orientation fault sites. On the basis of this assumption 
and assuming a threshold value of 2.5, the energy content of 
the orientation fault sites can be estimated to be 10.5.

The accumulation of energy necessary for the formation of an 
orientation fault site is calculated in the following way. In a gram 
molecule of ice, the electrostatic lattice energy originates chiefly as the 
result of the attraction between the 2N adjacent molecular pairs. The 
total lattice energy, according to table 2 in the first part of this paper, 
is about 13.6 kcal/gmol and the bond energy between a single molecular 
pair is consequently 13.6/2 N. At an orientation fault site the two 
adjacent molecules possess a bond energy numerically equal to the 
normal energy, but with the opposite sign. Hence every such fault site 
will diminish the lattice energy by 13.6/N and the formation of a gram 
molecule of fault sites will require 13.6 kcal. This value must be con­
sidered as a maximum value. For in the calculations it is assumed that 
the two similarly charged tetrahedral corners are in the normal position 
to one another, and that both lie on the connecting line between the 
centres of the tetrahedra. When the corners are differently charged the 
existence of this position is due to electrostatic attractions between the 
charges in the corners. The repulsion between two similarly charged 
corners must cause the corners to be forced away from the connecting 
line between the centres in opposite directions. If they are removed in 
this way 0.3 Å from the connecting line (the radius of the tetrahedron 
is 0.99 Å), the distance between the corners increases ca. 30 °/0, and if 
the distances between the differently charged tetrahedral corners at 
the other places of the lattice are assumed not to be altered appreciably 
from the hormal value 0.78 Å, the total lattice energy will not be 
decreased by 13.6/7V on account of a fault site, but only by 10.2/N. We 
will assume that the formation of a gram molecule of fault sites must 
require between 10.2 and 13.6 kcal.
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The critical threshold energy for molecular turns at a fault 
site can be calculated in the following way. Fig. 4 shows the 
initial, the threshold and the final positions during turning of a 
molecule (A). Before turning the fault site lies between molecules 
A and B and after turning between A and C. In the initial position 
the contribution made by the molecular pairs AB, AC and AD 
to the lattice energy amounts to 2x6.8/?/—6.8/iV = 6.8/Ä7, and

Fig. 4. Positions during moving of an orientation fault site.

the same contribution is given by the three pairs in the final 
position. In the threshold position the contributions of AB and 
AC are both zero. The contribution of AD (using the same ap­
proximations as on p. 34) can be calculated to 3.8/?/. In order 
to reach the threshold value an energy accumulation of (6.8 
— 3.8)/;Vis consequently required, corresponding to 3.0 kcal/gmol. 
This accumulation of energy will also be decreased on account 
of the deformation of the lattice at the fault site. In the following 
we will assume this value to be 2.5.

The rate of turns (n) per H2O molecule is the product of the 
number (c) of fault sites per molecule and the rate of turns (n') 
per fault site (n = cxn'). It is not possible to carry out the 
separation of n into these two factors with certainty; but in order 
to obtain a plausible value of c we have tried to carry out a 
reasonable separation, paying attention to the energy content of 
the fault sites (10.5) and to the critical energy threshold for turns 
at a fault site (2.5). From the Raman spectrum of ice it is known 
that the frequency (v) of the hindered rotation of the ice mole-
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cules is ca. 2.4 x 1013. Since turning of a molecule to a new 
equilibrium position requires that an energy threshold of 2.5 
must be passed, we will assume that the rate of such turns per 
fault site is n' — v x 2 X e~~2-°/RT (the factor of 2 is due to the fact 
that at each fault site there are two molecules that1 can turn). 
From this expression the value of n' at 0° C is calculated to 
4.8 x 1011. The rate of dipole turns (n) per molecule is according 
to table 1 0.83 X 106 at 0°. If the dipole turns are due to fault 
sites, the number of these fault sites per molecule must be 
c = n/n' = 1.7 X IO-6 at 0° and hence about 10~6 of each of 
the two types. This number is rather too large for a state with 
an energy content of 10.5 kcal/gmol. According to Boltzmann’s 
e-function the number should lie somewhere near —
0.36 X 10~8. It must be remembered, however, that Boltzmann’s 
function here represents only an approximation. If the uncertain 
Lorentz correction for the internal field is omitted in the cal­
culation of n from the dielectric properties of ice, the number 
of fault sites per molecule decreases to 1.1 x 10-7. Even with 
this modification the number of orientation fault sites, necessary 
to explain the dielectric properties of ice, is 30 times higher than 
expected from the Boltzmann calculation. This is, however, no 
sufficient reason to discard this explanation.

Summary.
1. Debye has explained the dielectric properties of ice by 

the existence in ice of dipoles which can turn. From the dielectric 
properties of ice the rate of dipole turns is calculated to ca. 
0.83 X 106 per second per molecule at 0° and the energy of 
activation to ca. 13 kcal/gmol. If the Lorentz correction used 
for the internal field is too large or even may be perhaps com­
pletely omitted, the rate of dipole turns may be up to ca. 16 
times less.

2. The configuration of an ideal ice crystal can not change 
by turning of a single molecule, but only by the simultaneous 
turning of a closed ring of molecules. Such turns of molecular 
rings do not alter the dipole moment of the crystal and therefore 
can not represent the dipole turns required by Debye’s theory. 
If the tetrahedral model with electric charges on the corners, 
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described in part I of this series, is used as a model of a water 
molecule, the energy of activation for a turning of a ring of six 
molecules is calculated to at least 21.6 kcal/gmol.

3. In an ice crystal fault sites are present where two or no 
protons are found between two oxygen atoms instead of the one 
normally present. These two types of fault sites occur in equal 
amounts. Molecules, between which such orientation fault sites 
are present, can easily turn and thereby rotate their dipole 
moments 90°. The apparent energy of activation for such turns 
is calculated from the above mentioned molecular model to 
between 12.7 and 16.1 kcal/gmol. The energy of activation thus 
has a size similar to that required for dipole turns in Debye’s theory 
(ca. 13 kcal/gmol). It may therefore be assumed that the mole­
cular turns at orientation fault sites represent the dipole turns 
required by Debye’s theory.

4. The rate of molecular turns at an orientation fault site is 
estimated to be ca. 4.8x1011 per second at 0°, and the con­
centration of each of the two types of fault sites to be ca. 1 in 
each 1()6 ice molecules. If the rate of dipole turns in ice should 
be less than 0.83 X 106 sec 1 per molecule the concentration of 
fault sites will be correspondingly higher.
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III.
IONISATION OF ICE AND MOLECULAR TURNS 
PRODUCED BY THE IONS. THE PROTON JUMP 

CONDUCTIVITY OF ICE (AND WATER)

1. Ions as producers of molecular turns.
In addition to orientation fault sites, there exist in ice fault 

sites, which are due to the presence of ions. If a proton jumps 
from an H2O molecule to a neighbouring molecule, an H3O+ 
and an HO- ion are formed. The chance that the proton will 
jump back again is great; but before there is time for this to 
happen, a proton may have jumped over from the H3O+ ion to 
a third H2O molecule (or from another H2O molecule to the 
HO“ ion). Hereby two spacially separated ions have appeared 
(see fig. 1). By new proton jumps of the types H3O++ H2O -* 
H2O + H3O+ and H2O + H()“ > HO“+ H2O the ions may be 
separated further from each other and migrate freely in the 
crystal lattice and cause the ice to become electrically conducting. 
As is well known, it is usual to explain the exceptionally high 
conductivity of the H3O+ ion in water in a similar way by 
assuming that this ion can move its charge, not only in the same 
way as normal ions, by moving as a unit through the medium 
of the solution, but also by the jumping of one of its protons 
over to an adjacent H2O molecule, and similarly, the abnormally 
high conductivity of the HO“ ion is explained by the jumping 
of a proton from an adjacent H2O molecule over to the HO- 
ion1). In ice, the H3O + and HO- ions formed will continue to 
migrate until an H3O+ and an HO- ion meet and thus have 
the possibility of recombination. Formation and recombination 
of the ions will lead to a state of equilibrium with definite ion 
concentrations.
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The ion concentrations in ice must be of a similar order of 
magnitude to those in water, since the conductivities of ice and 
water do not differ considerably. J. H. L. Johnstone2) gives the 
following values for the static conductivity of ice (x):

Temp. —Io — 4° —10° —19°
xxl()8 2.8 0.23 0.11 0.026

His determination at —Io appears improbably high. According 
to the other determinations, a rise in temperature of ca. 5° causes
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Fig. 1. Formation of ions by proton jumps.

a doubling of the conductivity, hence it is not natural that a rise 
from —4° to —Io should make the conductivity 12 times higher. 
A value of 0.35 X 10~8 at —Io (and 0.4 x 10~8 at 0°) would be 
more reasonable. Perhaps the high value at —1° is due to the 
presence of impurities in the ice, which have contributed to the 
conductivity, because they were - still present in the form of 
aqueous solution between the ice crystals.

The conductivity of water at 0° is calculated from the ionisation 
constant of water (0.119 x 10-14) and the molecular conductivity 
of the ions (345) to x = 1.2 x 1() ~8. This value is 2.3 times lower 
than the conductivity given by Johnstone for ice at —Io, and 
3 times higher than the value obtained for ice at 0° by extra­
polation from the determinations by Johnstone at lower tempera­
tures.

A calculation of the ion concentration in ice can be performed 
as follows. We will assume that the conductivity of ice is due 
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exclusively to its content of H3O + and H0— ions, and that 
these ions move exclusively by means of proton jumps. It is 
improbable that these ions as a unit can migrate through the 
crystal lattice of the ice at rates which are of significance in this 
connection or that other ions can do it.

In passing, it should be mentioned that, on account of these 
considerations, impurities do not have the same large effect on 
the conductivity of ice as they have on that of water. It is there­
fore easier to determine experimentally the conductivity of pure 
ice than that of pure water.

Only a fraction of the conductivity of pure water (1.2 X 10—8 
at 0° C) is due to proton jumps. Of the molecular conductivity 
of H3O+ ions at 0°, m = 240, only 200 is due to proton jumps, 
and of the molecular conductivity of HO- ions at 0°, p, — 105, 
only 64 is due to proton jumps (see section 6 for further details). 
Hence the proton jump conductivity of pure water at 0° is 1.2 X 10—8 
X 264/345 = 0.92 X 10~'8. We will now make the assumption 
that proton jumps between ions and H2O molecules in ice are 
just as frequent as they are in water at the same temperature 
between ions and H2O molecules in the right positions (hydrogen 
bond positions) to each other. According to conceptions developed 
later, the rate of proton jumps in water is reduced, on account 
of the more random orientation of the H2O molecules to the 
ions, at 0° in the ratio 0.93 for H3O~ ions and 0.77 for HO- 
ions. When this reduction is taken into consideration, the mole­
cular conductivities of the ions in ice amounts to: for H3O+ ions, 
200/0.93 = 215 and for HO- ions, 64/0.77 — 83, total 298. If 
the specific conductivity of ice is taken to be 0.4 X 10—8 at 0°, 
the molecular concentrations of the H3()+ and the HO- ions are 
calculated to 1.34 x 10-8, corresponding to the transformation of 
0.27 X 10—9 parts of the H2O molecules to H3O + ions and of the 
same amount of H2O molecules to HO- ions.

2. Rates of proton jumps in ice.
From the specific conductivity of ice it is possible to calculate 

how frequently proton jumps of the types H3O++ H2O H2O 
+ H3O+ and H2O + HO- -> HO- + H2O take place. The cal- 
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culation can be performed by the use of Einstein’s theory for 
Brownian movements.

Einstein3) has developed the following equation:

I) = d2/(6r)

where I) is the coefficient of diffusion of a particle and d2 the 
mean value of the square of the displacement of the particle in 
space in the time r. The coefficient of diffusion for a monovalent 
ion can be calculated from its molecular conductivity by means 
of the following equation :

I) = /z X RT/F2X 107 = /z X 0.244 x 10~6 at 0° C.

If the molecular conductivity of an ion is known, it is possible, 
from Einstein’s equation, to calculate an expression for the time 
T taken by the ion to be displaced a certain distance. To give 
an exact result, Einstein’s equation requires that the displace­
ments of the particle are changed by collisions many times within 
the time t. We will, however, use the equation for the approximate 
determination of the mean time (r0), which the ion is displaced 
2.76 Å, corresponding to a proton jump. The rate of proton jump 
displacements of an ion will then be

/ n
1 QI)

To “ (2.76 X IO-8)2
= /zX0.193x IO10 sec-h

If the values of // for H3() + (215) and for HO- (83) are sub­
stituted in this equation, we obtain for the rate of proton jumps 
at an H3O + ion, 41.5 X 1010 and at an HO- ion, 16.0 X 1010, all 
per second. For the rate of proton jumps per H2O molecule we 
finally obtain (c is the molar ion concentration and 50.9 the 
number of gram moles in 1000 cm3 of ice):

n = n X c/50.9 = c X ft X 3.79 X 107 = x X 3.79 x 1010.

If the specific conductivity of ice at 0° is taken as 0.4 X 10~8, 
the rate of proton jumps per H2O molecule in ice is calculated 
by means of this equation to 152 per second. Even at the melting 
point, where the proton jumps must be most frequent, an H2O 
molecule only turns ca. 150 times in a second owing to the 
presence of the H3O+ and HO~ ions in the ice.
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3. Ionisation and proton jumps at the ions cannot explain 
the dielectric properties of ice.

The idea that proton jumps and ionisation may be of signifi­
cance for the occurrence of the frequent dipole turns, required 
by Debye’s theory for the dielectric properties of ice, has been 
advanced from several quarters.

M. L. Huggins4), who was perhaps the first to put forward 
this view, was doubtful of the idea as it leads to the existence 
of H3O+ and HO ions in ice. He therefore considered proton 
displacements in rings of H2O molecules as the explanation for 
the high dielectric constants of ice and water. He does not appear 
to have noticed that proton displacements in rings do not change 
the dipole moment.

W. M. Latimer5) has put forward the idea that the con­
figuration changes in ice are connected with the processes during 
which the ions H3O+ and HO’- appear and disappear in ice. 
Since the rate at which these processes occur may be high, even 
if the concentration of the ions is low, Latimer thinks that there 
is a possibility of explaining the rapid configuration changes in 
ice in this way. Quantitatively viewed, this is, however, not possible. 
Formation and recombination of the ions must be a far more 
infrequent process than molecular turns during migration of 
the ions.

W. Kauzmann6) has expanded Huggins’ idea in an interesting 
way. He has put forward the proposition that the changes in the 
configuration of ice could be due to the proton jumps, which 
accompany migration of the ions in ice. An H2O molecule which, 
during migration of the ions, has momentarily been an ion, is 
left in a new position, if the proton does not jump back to the 
same H2O molecule from which it came. I myself have worked 
with this proposition, without knowing Kauzmann’s work. There 
is no doubt that migrations of the ions must produce molecular 
turns, during which the dipole moments of the ions are turned 
through 90°. These turns, however, are far from sufficiently 
frequent to explain the dielectric properties of ice (ca. 150 per 
sec. per ice molecule, whereas ca. 106 are required). An even 
more important objection is the following. The dipole moment 
produced by these molecular turns is in the opposite direction 
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to that which is required. This can be shown in the following 
way. The dipole moment produced by migration of the ions in 
an isolated ice block is the vector sum of a series of proton 
jumps, each of 0.78 Å. The dipole moment produced can also 
be considered as the sum of the dipole changes, caused by dis­
placements of the ions, and the dipole changes, caused by turns 
of the H2O molecules. The change of the dipole moment, due 
to displacements of the ions, is 2.76/0.78 times larger than the 
dipole moment corresponding to the proton jumps (the dis­
placement of the ion is 2.76 Å, when the proton jumps 0.78 A). 
Consequently the dipole moment due to turns of molecules must 
be in the opposite direction and numerically 1.98/0.78 times 
larger than the dipole moment corresponding to the proton jumps 
(1.98/2.76 parts of the dipole moment produced by displacements 
of the ions).

Hence it is not possible to use the molecular turns connected 
with the migration of the ions as an explanation for the dielectric 
properties of ice. Only the molecular turns produced at orientation 
fault sites, which are described in part II of this paper, can be used. 

4. The proton jump conductivity of ice (and water).
In the previous section an account is given of how the ions 

H3O+ and HO“ move in ice by means of proton jumps and 
how these movements are connected with molecular turns, which 
produce dipole moments in the direction opposite to the move­
ments and amounting to 1.98/2.76 parts of the dipole moment 
produced by the ion displacements. If an electric current is 
passed through a block of ice, avoiding polarization (electric 
charges) at the two ends, where the current is lead in and out, 
the ion movements in themselves will not give the block a dipole 
moment. On the contrary, it might be expected that the turns of 
the molecules would produce a gradually increasing dipole 
moment in the opposite direction to that of the electric force. 
The molecules are, however, also able to turn at orientation fault 
sites, and since the turns at orientation fault sites are ca. IO4 
times as frequent as the turns at the ions, they are not only able 
to prevent the appearance of this dipole moment, but in addition
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to produce the dipóle moment required by Debye’s theory in 
the direction of the force.

For the hypothesis of the proton jump conductivity of ice 
it is thus of vital importance that the molecular turns produced 
at orientation fault sites are far more frequent than the mole­
cular turns produced at ions.

In water the molecular turns at orientation fault sites are even 
more frequent than in ice (according to the dielectric properties 
ca. 105 to 106 times more frequent). There is therefore very good 
reason to consider the abnormally high conducivity of the H3O+ 
and HO“ ions in water as a result of the ability of these ions 
to move, not only as a unit, but also by means of proton jumps.

5. Ion concentration and proton jumps in ice at lower 
temperatures. Energies of activation.

The specific conductivity of ice (x) decreases on cooling. 
From Johnstone’s determination at—4° and—19° (see p. 42) an 
apparent energy of activation E = 19.6 kcal/gmol is calculated 
by means of the expression E = —R d In x/d (1 /T). Let us try 
to calculate theoretically a value for this energy of activation.

Assuming that the total conductivity is due to proton jumps, 
the conductivity must decrease in the same ratio as the rate of 
proton jumps. The rate of proton jumps decreases partly because 
of the decrease in the ion concentration and partly because 
proton jumps require a certain energy of activation. The decrease 
in the ionisation depends on the heat production during the 
process of “neutralization” H3O++ HO~ —* 2H2O. In water this 
process is accompanied by an evolution of heat of 13.7 kcal/gmol. 
This heat production (disregarding the difference between pro­
duction of heat and of energy) can be separated into two parts: 
the energy, liberated during the actual proton jump, and the 
energy, liberated on account of the electrostatic attraction between 
the ions when they approach each other. The latter part can be 
calculated from the expression e2/ea to 1.4 kcal/gmol, when the 
dielectric constant (e) in water at 0° is taken as 88, and the 
distance (a) between the ions when they touch as 2.76 Å. The 
energy which is released during the proton jump itself from 
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H3O+ to H0— is therefore 13.7 — 1.4 = 12.3 and hence forms 
the greater part. In ice we will assume that the production of 
energy during the proton jump itself is the same as it is in water 
and since the static dielectric constant in ice is of a similar size 
to that in water, we will for the present assume that also that 
part of the energy production, which is due to the electrostatic 
attraction between the ions, has the same size in both ice and 
water. Hence the formation of the ions in ice requires the same 
amount of energy as in water (13.7) and the ion concentration 
in ice should therefore decrease with temperature according to 
the expression:

— R d In c/d(l/T) = 13.7/2 = 6.85. (1)

The energy of activation (Ep) for proton jumps between the 
ions and the H2O molecules can be calculated from the tempera­
ture coefficient for that part of the conductivity of the ions in 
water, which is due to proton jumps. As will be shown later, 
the following energies of activation are thus obtained:

For H3O+ Ep = 2.5 and for HO’ Ep = 4.7.

The fact that the energy of activation is lower for H3O+ than 
for HO’ is of course in agreement with the higher proton jump 
conductivity of H3O + .

Let the number of proton jumps per H2O molecule be n, per, 
H3O+ ion n and per HO- ion n", and let c be the molecular 
concentration of the ions H3O+ and IK) (these concentrations 
must be equal, assuming that the ice lattice contains no other 
ions), then:

n = c (n'+ n")/50.9

(50.9 is the number of H2O molecules in 1000 cm3 of ice).
For the change of c with temperature (1) is valid and for 

changes of n and n" :

— R d in n/d(l/T) = 2.5 and -Ä d Zn n"/d (1/T) = 4.7.

For the variation of n with temperature we obtain:

—Rdlnn/d(llT) = 6.85 + E,

where E — 2.5xn'/(n' + n") + 4.7 X n"¡(n + n").
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At 0o C according to the statement on p. 43 the proton jump 
conductivity in ice of H3O+ is 215 and of HO- 83. n and n" are 
proportional to these figures. Hence we obtain E = 3.1 at 0° C. 
At lower temperatures the ratio n /n" will increase and E will 
decrease gradually towards 2.5.

The apparent energy of activation, corresponding to the 
temperature coefficient of the conductivity of ice, should hence 
be 6.85 + 3.1 = 9.95 near the melting point. This is only half 
of the value calculated from Johnstone’s determinations of the 
conductivity of ice. The reason may be that Johnstone’s deter­
minations are not sufficiently accurate to be used for deter­
mination of temperature coefficient. It is, however, more probable 
that in the calculation of the energy required for separation of 
the ions it has not been permissible to use the high static dielectric 
constant of water (88). If we had used a value 15 times lower 
(5.9, this is the size of the dielectric constant of ice in an alternating 
field, which changes ca. 40,000 times in a second) a release of 21.0 
and not 1.4 kcal/gmol would have been found when the ions 
approached contact. The evolution of heat by the process of 
“neutralization” would have in this case been calculated to 
12.3 + 21.0 = 33.3 and the apparent energy of activation to 
33.3/2 4- 3.1 = 19.75 and thus have been in agreement with John­
stone’s conductivity determinations.

On the other hand, it must not be forgotten that the ion con­
centrations in water and ice are of about the same size, and 
that this is an indication that the heat of “neutralization” in ice 
and w ater should also be expected to be approximately the same.

The use of the static dielectric constant has been shown to be 
permissible in calculations of the forces between the ions in water. 
This is apparent e. g. from Debye and Heckel’s work on the 
coefficients of ion activity7) and from Bjerrum’s calculations on 
the relation between the dissociation constants of poly-acidic 
acids8).

The molecules in ice, however, turn ca. 106 times less fre­
quently than they do in water. Therefore it appears reasonable 
that in ice, not the static dielectric constant, but a dielectric con­
stant corresponding to an alternating field of high frequency, 
has to be used.

Dan. Mat.Fys.Medd. 27, no. 1. 4
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6. Calculation of the energies of activation for the reactions 
H3O+ + H2O->H2O + H3O+ and H2O + HO“ -> HO- + H2O 
from temperature coefficients of proton jump conductivities 

of the ions H3O+ and HO“ in water.
In table 2 the electrical conductivities at infinite dilution ) 

are given for the ions H3O+, K+, HO- and C1“ at temperatures 
from 0° to 100° according to J. Johnstone9).

If it is assumed that the H3O+ ion, in the absence of proton 
jumps, would have the same conductivity as the potassium ion, 
and the HO“ ion the same conductivity as the chloride ion, the 
figures given in table 3 are obtained for that part of the con­
ductivity (/zp) which is due to proton jumps, brom these proton 
jump conductivities energies of activation are calculated by 
means of the usual equation :

E = — R din /u/d (I/T).

These energies of activation are presented in table 4. (In the 
calculation, in place of differentials, differences have been used).

* Johnstone gives 284. An interpolation between the value at the four other tem­
peratures makes 279 more probable.

Table 2.
Molar conductivities at infinite dilution (mJ in water.

t 0° 25° 50° 75° 100°

H3O+........................ 240 350 465 565 644
k+........................... 40.4 74.5 115 159 206
HO-........................ 105 192 279* 360 439
ci-............................ 41.1 75.5 116 160 207

Table 3.
Molar conductivities due to proton jumps (pp).

t 0° 25° 50° 75° 100°

h3o+.......................... 199.6 275.5 350 406 438
HO“........................ 63.9 116.5 163 200 232
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Table 4.
Energies of activation (E) expressed in kcal/gmol, calculated from 

the proton jump conductivities of the ions in mater.

t° c 0-25 25-50 50-75 75-100

h30+.............................. 2.07 1.83 1.33 0.78
HO-............................. 3.85 2.58 1.83 1.53

In the range 0° to 25° the energies of activation for H3O+ are 
ca. 2 and for HO- ca. 4. These values ought not, however, to 
be considered, without reservations, as the energies of activation 
Ep for the proton transitions H3O++ H2O -*• H2O + H3O + and 
HO-+ H2O —*■ H2O + HO~. The energies of activation in the 
table decrease steeply with rising temperature. This fall can be 
explained in the following way: In order that the proton jump 
can take place, an H2O molecule must be orientated towards 
the ion in a so-called hydrogen bond position, i. e. so that a 
positive proton-containing corner in the H3O+ ion is turned to­
wards a negative proton-free corner in an H2O molecule, and a 
negative proton-free corner in the H()~ion turned towards a posi­
tive proton-containing corner in an H2O molecule. This condition 
is always fulfilled for the ions in ice, but on the contrary not 
always in water. With rising temperature the number of favourable 
positions in water will decrease. This will reduce the rise in p, with 
temperature and thus make the calculated E values, given in 
table 4, lower than the true energies of activation Ep for proton 
jumps in a hydrogen bond position.

This effect can be corrected for as follows: Let a be the 
fraction of the protons in the H3O + ions, which are associated 
with an H2O molecule in hydrogen bond position. The following 
equation can be used for the variation of a with temperature:

_a==Q_(°A
RT R6\T ) (2)

Q is here the evolution of heat on association of an H2O 
molecule with the ion in hydrogen bond position, and A is a 
constant, which can be calculated when the value of a is known 
at one temperature, e. g. if we know the temperature 0 at which 

4* 
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a is equal to 0.5. This temperature 0 is substituted for A in 
equation (2). Equation (2) is correct if the value of Q is the 
same whether other H2O molecules are already associated with 
the ion or not, and if the tendency of the ion to associate with 
an H2O molecule is also independent of this.

The rate h of proton jumps H3O+ + H2O H2O + H3O + 
per H3O+ ion may be equated to 3aß, where a is the fraction 
of associated protons defined above and ß is the rate of proton 
jumps per hydrogen bond H3O+—H2O. Hence we obtain:

K-_fídlnh _ P dlna dlnß - » dlna t r
ßd(l/T) Bd(l/T) Pd(l/T) Rd(l/T)+ p

From (2) it can be deduced that It d In a/d (1/T) = Q (1 — a).
If we use this equation we obtain from (3):

= E + Q (1 — a). (4)

By means of (2) and (4) Ep for H3O+ is calculated for a 
series of different pairs of values for Q and 0. Table 5 gives the

Table 5.
Ep values for H3O + , calculated from E values for a series of sets 

of values of Q and 0.

Q 0 0°-25° 25°-50° 50°-75° 75°-100° mean of
7?p (H3O + )

3 200 4.84 4.64 4.20 3.68
3 273 3.75 3.81 3.54 3.16
3 320 3.16 3.23 2.99 2.67
3 400 2.66 2.69 2.30 1.97
4 273 4.39 4.47 4.52 4.21
4 300 3.74 4.06 4.01 3.76
4 320 3.34 3.64 3.62 3.47
4 400 2.54 2.63 2.43 2.24
4.5 273 4.71 5.13 5.13 4.76
4.5 320 3.41 3.84 3.95 3.88
4.5 360 2.79 3.04 3.07 3.17
4.5 400 2.49 2.55 2.46 2.36 2.46
5 273 5.06 5.59 5.56 5.30
5 320 3.47 4.04 4.28 4.32
5 400 2.44 2.53 2.47 2.46
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results of these calculations. Similar calculations are performed 
for HO” and the results are presented in table 6.

Table 6.
Ep values for HO“, calculated from E values for a series of sets 

of values of Q and 0.

y 0 0°-25° 25°-50° 50°-75° 75°-100° mean of
Ep (HO-)

3 200 6.62 5.39 4.70 4.43
3 273 5.53 4.56 4.04 3.91
3 320 4.94 3.98 3.49 3.42
3 400 4.44 3.44 2.80 2.72

4 273 6.17 5.22 5.02 4.96
4 300 5.52 4.81 4.51 4.51
4 320 5.12 4.39 4.12 4.22
4 400 4.32 3.38 2.93 2.99

4.5 273 6.49 5.88 5.63 5.51
4.5 320 5.19 4.59 4.45 4.63
4.5 360 4.57 3.79 3.57 3.92
4.5 400 4.27 3.30 2.96 3.11

5 273 6.84 6.34 6.06 6.05
5 320 5.25 4.79 4.78 5.07 4.97
5 400 4.22 3.28 2.97 3.21

It is not possible, solely by the use of the figures in table 5, 
to find the set of Q and 0 which make the calculated Ep values 
for H3O+ independent of the temperature, or to solve the cor­
responding problem for HO-. The conductivities, on which these 
calculations are based, are too inaccurate for this purpose and 
this is especially true for HO-. We know, however, that the 
energy of the hydrogen bond H2O — H2O in water generally is 
considered to be ca. 4.5 10), and we will therefore use Q values 
near this figure. Considering this and also that the Ep values of 
course should be as uniform as possible in all temperature 
ranges, it appears reasonable to choose

for H3O+ Q = 4.5 and 6 = 400° K
for HO- Q = 5 and 6 = 320° K.
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This choice leads to the following Ep values :

for H3O+ Ep = 2.5; for HO- Ep = 4.7.

For H3O+ in water, a (the fraction of the protons of the ion 
which have an H2O molecule in hydrogen bond position) is 0.95 
at 0° C and 0.61 at 100° C. For HO-, a (the fraction of the 
proton-free corners of the ion which have an H2() molecule in 
hydrogen bond position) is 0.77 at 0° C and 0.44 at 100° C. For 
comparison it should be stated that Bernal and Fowler11) have 
roughly estimated, from the heat of fusion of ice and from the 
heat capacity of water, that in water at 0° 0.88 of the hydrogen 
bonds between the H2O molecules are intact and at 100°, 0.75.

Summary.

1. Ice contains in its lattice H3()+ and HO- ions in equal 
concentrations. They are formed, without displacements of oxygen 
atoms, by proton jumps between two adjacent H2() molecules: 
H2O + H2O -* H3O+T HO-, and they are separated similarly, 
without displacements of oxygen atoms, by proton jumps between 
the ions and H2O molecules: H3O+4- H2O -► H2O + H3O+ and 
H2O + HO- -> HO-+ H2O. The ions migrate in the ice by 
means of proton jumps, until oppositely charged ions meet again 
and have the possibility of recombining.

2. The conductivity of ice may be assumed to be due ex­
clusively to migration of H3O+ and HO- ions by means of proton 
jumps. The molecular conductivity of these ions in ice can be 
calculated from the proton jump conductivity of the ions in water 
to be: 215 for H3O+ and 83 for HO- at 0° C. The molecular con­
centration of the ions in ice is calculated from the specific con­
ductivity of ice to 1.34 X 10— 8, corresponding to the transforma­
tion of 0.27 X 1()—9 parts of the molecules to H3O+ ions, and of 
an equal fraction of the molecules to HO- ions.

3. The rate of proton jumps in ice can be calculated, by 
means of Einstein’s equation for Brownian movements, to be:

per H2O molecule................................................................ 152
per H3O+ ion (type H3O+ + H2O -> H2O + H3O+) . 4.15 X 1011 
per HO- ion (type H2O + HO ~* HO-+ H2O) 1.6 X 1011 

all per second at 0° C.
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4. The energies of activation for the proton jumps at the ions 
are calculated, from the temperature coefficient for the proton 
jump conductivity of the ions in water to be:

for H3O+ 2.5 kcal/gmol, for HO- 4.7 kcal/gmol.

Using these values it is possible to calculate the temperature 
coefficient for the rate of proton jumps at the ions. The tempera­
ture coefficient for the molecular conductivity of the ions is the 
same as for the rate of proton jumps.

The fall in the ion concentration with temperature is de­
pendent on the evolution of heat by the process of neutralization 
H3O++ HO' —> 2 H2O. This must be of a similar size in ice 
and in water (13.7), if it is permissible to use the static dielectric 
constant for the electrostatic forces between the ions in ice. A 
heat of neutralization of this order seems probable, as the ionization 
in ice is not very different from that in water. If, on account of 
the lower mobility of the dipoles in ice, a lower dielectric con­
stant has to be used, the heat of neutralization in ice will be 
higher than that in water. If, e. g., a dielectric constant of 5.9 
is assumed (corresponding to an alternating field frequency of 
40 kc) the value is calculated to 33.3 kcal/gmol.

From Johnstone’s not very reliable determinations of the 
conductivity of ice, an apparent energy of activation of 19.6 
kcal/gmol is calculated. The same energy of activation is cal­
culated from the energies of activation for the proton jumps and 
from the heat of neutralization to only 9.95, when the heat of 
neutralization is taken as 13.7. On the other hand, a heat of 
neutralization of 33.3 gives an energy of activation of 19.75, 
which is in agreement with Johnstone’s figure.

5. The migration of the ions in ice is connected with turns 
of the II2O molecules. If the ions migrate under the influence of 
an electric force, these turns will produce a dipole moment in 
the opposite direction to that of the force. The molecular turns 
produced by migration of the ions can not therefore be those 
required by Debye’s theory for the dielectric properties of ice. 
They are also too infrequent to account for these properties.

6. For the justification of assuming the conductivity of ice to 
be the result of proton jumps in ice, it is of decisive importance 
that the molecular turns at orientation fault sites are between 
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IO3 and 104 times as frequent as molecular turns at the ions. 
This means that they are able to neutralize the dipole moment 
produced by the migration of the ions in an electrical field.

7. For the justification of assuming the abnormally high con­
ductivity of the H3O+ and HO- ions in water to be the result 
of proton jumps between the ions and the water molecules, it 
is of decisive importance that the molecular turns, connected 
with these proton jumps, only amount to a very small fraction 
of all the molecular turns in water.

References.

1) See e. g. II. Danneel, Zeitsch. f. Elektroch. 11 (1905) 249, 
A. Hantzsch and Kenneth S. Caldwell, Zeitschr. f. physik. Ch. 
58 (1907) 575, L. Lorenz, 1. c. 63 (1910) 252, E. Hückel, Zeitschr. 
f. Elektroch. 34 (1928) 546, Bernal and Fowler, Jour. Chem. 
Physics I (1933) 541, H. Ulich, Handbuch u. Jahrbuch d. chem. 
Physik 6 II (1933) 177.

2) J. H. L. Johnstone, Proc. Trans. Nova Scotian Inst. 13 (1912) 126.
3) A. Einstein, Ann. of Phys. (4) 17 (1905) 549, 19 (1906) 371.
4) M. L. Huggins, Journ. Phys. Chem. 40 (1936) 723.
5) W. M. Latimer, Chem. Rev. 44 (1949) 59.
6) W. Kauzmann, Rev. Mod. Physics, 14 (1942) 40.
7) Debye and Hückel, Physik. Zeitschr. 24 (1923) 185, 305.
8) Niels Bjerrum, Zeitschr. physik. Ch. 106 (1923) 219 and Ergeb­

nisse der exakten Naturwissenschaften fr (1926) 125.
9) J. Johnstone, Journ. Amer. Chem. Soc. 31 (1909) 1015.

10) L. Pauling, Nature of the chemical bond, New York (1945) 333.
11) Bernal and Fowler, Journ. Chem. Physics I (1933) 531.

Indleveret til selskabet den 19. oktober 1951. 
Færdig fra trykkeriet den 31. december 1951.


